Геометрической прогрессии



На рисунке 7-2 показана эффективная граница, соответствующая арифметическим средним HPR, и граница, соответствующая геометрическим средним HPR. Посмотрите, что происходит с эффективной границей при реинвестировании. Построив линию GHPR, можно определить, какой портфель является геометрически оптимальным (наивысшая точка на линии GHPR). Вы можете найти этот портфель, преобразовав AHPR и V каждого портфеля на эффективной границе AHPR в GHPR с помощью уравнения (7.05) и выбрав максимальное значение GHPR. Однако, зная AHPR и V портфелей, лежащих на эффективной границе AHPR, можно еще проще определить геометрический оптимальный портфель, он должен удовлетворять следующему уравнению:

Необходимо сделать небольшое замечание по геометрическому оптимальному портфелю. Дисперсия в портфеле в общем случае имеет положительную корреляцию с наихудшим проигрышем. Более высокая дисперсия обычно соответствует портфелю с более высоким возможным проигрышем. Так как геометрический оптимальный портфель является портфелем, для которого Е и V равны (при E=AHPR- 1), мы можем допустить, что геометрический оптимальный портфель будет иметь высокие проигрыши. Фактически, чем больше GHPR геометрического оптимального портфеля (т.е. чем больше зарабатывает портфель), тем больше может быть его текущий проигрыш (откат по балансу счета), так как GHPR положительно коррелирован с AHPR. Здесь мы видим некий парадокс. С одной стороны нам следует использовать геометрический оптимальный портфель, с другой — чем выше среднее геометрическое портфеля, тем большими будут откаты по балансу счета в процентном выражении. Мы знаем также, что при диверсификации следует выбирать портфель с наивысшим средним геометрическим, а не с минимальным проигрышем, но эти величины стремятся в противоположных направлениях! Геометрический оптимальный портфель — это портфель, который расположен в точке, где линия, прочерченная из (0, 0) с наклоном 1, пересекает эффективную границу AHPR.

Пусть нашей целью будет AHPR при значении V, которое соответствует геометрическому оптимальному портфелю. В знаменателе (2.09а) мы используем среднее геометрическое геометрического оптимального портфеля. Теперь мы можем определить, сколько сделок необходимо для того, чтобы привести наш геометрический оптимальный портфель к одной сделке арифметического портфеля:

Следует иметь в виду, что для данной безрисковой ставки касательный портфель и геометрический оптимальный портфель в общем случае не одинаковы. Портфели будут идентичными при выполнении следующего равенства: (7.12) RFR=GHPROPT-1,

Только когда разность GHPR геометрического оптимального портфеля и единицы равна безрисковой ставке, геометрический оптимальный портфель и касательный портфель будут одинаковыми. Если RFR > GHPROPT - 1, тогда геометрический оптимальный портфель будет слева (т.е. иметь меньшую дисперсию, чем касательный портфель). Если RFR < GHPROPT - 1, тогда касательный портфель будет слева (т.е. иметь меньшую дисперсию, чем геометрический оптимальный портфель). Во всех случаях касательный портфель, конечно же, никогда не будет иметь более высокое GHPR, чем геометрический оптимальный портфель. Отметьте также, что точки касания CML к GHPR и CML к AHPR имеют одну координату SD. Мы можем использовать уравнение (7. Ola) для поиска касательного портфеля GHPR, заменив в (7. Ola) AHPR на GHPR. В результате получится следующее уравнение:

В этом разделе мы увидим, что можно поднять прибыли выше линии GCML, если снять ограничение на сумму весов. Давайте вернемся к геометрическим оптимальным портфелям. Если мы попробуем составить геометрический оптимальный портфель из наших четырех рыночных систем — Toxico, Incubeast, LA Garb и сберегательного счета, то с помощью уравнений с (7. Оба) по (7.06г) найдем, что он является таковым при Е, равном 0,1688965, и V, равном 0,1688965. Среднее геометрическое такого портфеля будет равно 1,094268, а состав портфеля будет иметь вид:

При решении уравнений с (7. Оба) по (7.06г) необходимо использовать метод итераций, т.е. выбирать тестируемое значение для Е и решать матрицу для этого Е. Если полученное значение дисперсии больше значения Е, это означает, что тестируемое значение Е слишком высокое и в следующей попытке следует его понизить. Вы можете определить дисперсию портфеля, используя одно из уравнений с (6. Оба) по (б.Обг). Повторяйте процесс, пока не будет выполняться любое из равенств с (7. Оба) по (7.06г). Таким образом вы получите геометрический оптимальный портфель (отметьте, что все рассмотренные портфели на эффективной границе AHPR или на эффективной границе GHPR определяются с учетом того, что сумма весов равна 100%, или 1,00). Вспомните уравнение (6.10), используемое в первоначальной расширенной матрице для поиска оптимальных весов портфеля, уравнение отражает тот факт, что сумма весов равна 1:

Решив матрицу, мы увидим, что уравнения с (7.Оба) по (7.06г) удовлетворяются при Е, равном 0,2457. Так как это геометрический оптимальный портфель, V также равно 0,2457. Получившееся среднее геометрическое равно 1,142833. Портфель будет выглядеть следующим образом: Toxico 102,5982%

Таким образом, используя новые «отрегулированные» значения^ мы получаем геометрический оптимальный портфель. Допустим, Toxico представляет определен-

Таким образом, мы можем утверждать, что эффективные границы портфелей с неограниченной суммой весов содержат одинаковые портфели с разным уровнем заемных средств (с разным плечом). Портфель, в котором меняется величина плеча для получения заданного уровня прибыли Е, когда снято ограничение суммы весов, будет иметь второй множитель Лагранжа, равный нулю, при сумме весов, равной 1. Теперь мы можем достаточно просто определить, каким будет наш неограниченный геометрический оптимальный портфель. Сначала найдем портфель, который имеет нулевое значение для второго множителя Лагранжа, когда сумма весов ограничена 1,00. Одним из способов поиска такого портфеля является процесс итераций. Получившийся в результате портфель поднимается (или опускается) рычагом в зависимости от выбранного Е для неограниченного портфеля. Значение Е, удовлетворяющее любому уравнению с (7.Оба) по (7.06г), и будет тем значением, которое соответствует неограниченному геометрическому оптимальному портфелю. Для выбора геометрического оптимального портфеля на эффективной границе AHPR для портфелей с неограниченными весами, можно использовать первый множитель Лагранжа, который определяет положение портфеля на эффективной границе. Вспомните (см. главу 6), что одним из побочных продуктов при определении состава портфеля методом элементарных построчных преобразований является первый множитель Лагранжа. Он выражает мгновенную скорость изменения дисперсии по отношению к ожидаемой прибыли (с обратным знаком). Первый множитель Лагранжа, равный - 2, означает, что в этой точке дисперсия изменяется по отношению к ожидаемой прибыли со скоростью 2. В результате, мы получим портфель, который геометрически оптимален. (7.06д) L1 = - 2,

Теперь объединим эти концепции вместе. Портфель, который с помощью рычага перемещается вдоль эффективных границ (арифметических или геометрических) портфелей с неограниченной суммой весов, является касательным портфелем к линии CML, выходящей из RFR == 0, когда сумма весов ограничена 1,00 и NIC не используется. Птак, мы можем найти неограниченный геометрический оптимальный портфель путем поиска касательного портфеля для RFR = 0, когда сумма весов ограничена 1,00, а затем поднять рычагом полученный портфель до точки, где он становится геометрическим оптимальным. Но как определить,


Одним из важнейших направлений конструкторской унификации является сокращение номенклатуры изделий, имеющих одинаковое или сходное эксплуатационное назначение. Оно реализуется в первую очередь путем создания параметрических рядов (гамм) изделий. Каждый ряд представляет собой совокупность изделий, аналогичных по кинематике, рабочему процессу, но различных по габаритным, мощностным или другим основным эксплуатационным параметрам (грузоподъемность грузового автомобиля или крана, рабочий объем двигателя, производительность компрессора и т. д.). Параметрический ряд, как правило, создается в соответствии с ГОСТ 8032—84 «Предпочтительные числа и ряды предпочтительных чисел». Обычно пользуются четырьмя десятичными рядами R5; RIO:, R20; R40 с соответствующими знаменателями геометрической прогрессии 1,6; 1,25; 1,12; 1,06. Расчет параметрических рядов для выбора экономически рационального разрежения ряда производится по «Типовым методикам оптимизации параметрического (типоразмерного) ряда» и соответствующей типовой методике для многомерных рядов. Имеются экономико-математические модели их оптимизации, основанные как на классических методах в условиях непрерывности и дифференцируемости функции затрат и функции спроса и наличии экстремума общих затрат, так и неклассических методах оптимизации, разработанных, в частности, Институтом математики Сибирского отделения АН СССР. Параметрические ряды формируют в каждой отрасли перспективный типаж изделий, что весьма ограничивает их возможную номенклатуру.

нов геометрической прогрессии, в которой количество членов п=Тсл; первый член суммы 1/=1; знаменатель

Сумма членов геометрической прогрессии

К. к. представляет собой сумму членов геометрической прогрессии, где членом прогрессии является коэффициент изменения добычи, и определяется по формуле

обводненности свыше 90% затраты возрастают в геометрической прогрессии. Это характерно для любых де-битов скважин и обоих способов эксплуатации.

Сумма этой геометрической прогрессии составляет:

где через р обозначено отношение К/ц. Уже из этой формулы видно, что о стационарном распределении имеет смысл говорить лишь при Я < fi, т. е. при 1/j.i <; 1/А, (или р < 1). При р <; 1 бесконечная сумма в соотношении (2.7) легко подсчитывается по формуле суммы бесконечно убывающей геометрической прогрессии:

В данном случае мы имеем дело с геометрической прогрессией, поэтому применив известную из курса математики формулу суммы членов геометрической прогрессии, мы получаем выражение для будущей стоимости обычного n-периодного аннуитета:

Применив к этому выражению формулу суммы членов геометрической прогрессии, получаем искомое выражение для текущей стоимости аннуитета:

бесконечно убывающей геометрической прогрессии: ^ Р™ = , _ •

Следует заметить, что этот коэффициент представляет собой сумму членов геометрической прогрессии, где первый член равен <7i = 1, а знаменатель q = (1 + ic). На этом основании, используя формулу для суммы членов геометрической прогрессии, преобразуем полученное выражение для наращенной суммы ренты к такому виду:


Государственные инвестиции Государственные краткосрочные обязательства Государственные облигации Государственные программы Государственные ведомства Государственных чиновников Гармонизации интересов Государственных инвестиций Государственных комитетов Государственных мероприятий Государственных объединений Государственных организаций Государственных регуляторов вывоз мусора снос зданий

Яндекс.Метрика