Наибольший коэффициент



система, тем выше ? Чем выше ?, тем больше возможный проигрыш, так как максимальный проигрыш (в процентах) не меньше ? Парадокс ситуации заключается в том, что если система способна создать достаточно высокое оптимальное ?, тогда проигрыш для такой системы также будет достаточно высоким. С одной стороны, оптимальное ? позволяет вам получить наибольший геометрический рост, с другой стороны, оно создает для вас ловушку, в которую можно легко попасться. Мы знаем, что если при торговле фиксированной долей использовать оптимальное ?, то можно ожидать значительных проигрышей (в процентах от баланса). Оптимальное ? подобно плутонию — оно дает огромную силу, однако и чрезвычайно опасно. Эти значительные проигрыши — большая проблема, особенно для новичков, потому что торговля на уровне оптимального ? создает опасность получить огромный проигрыш быстрее, чем при обычной торговле. Диверсификация может сильно сгладить проигрыш. Плюсом диверсификации является то, что она позволяет делать много попыток (проводить много игр) одновременно, тем самым увеличивая общую прибыль. Справедливости ради следует отметить, что диверсификация, хотя обычно она и является лучшим способом для сглаживания проигрышей, не обязательно уменьшает их и в некоторых случаях может даже увеличить убытки!

рыночной системой в тот же день. Поэтому с помощью диверсификации возможно получить оптимальный портфель, который размещает меньшую долю f (в долларах) в данную рыночную систему, чем при торговле только в этой рыночной системе. Для этого для каждой рыночной системы вы можете разделить оптимальное f в долларах на количество рыночных систем, в которых работаете. В нашем примере, вместо того чтобы выбрать 5000 долларов в качестве оптимального f для рыночной системы А, нам следует использовать 2500 долларов (разделив 5000 долларов, оптимальное f, на 2, количество рыночных систем, в которых мы собираемся торговать), и таким же образом следует поступить с рыночной системой В. Теперь, когда мы используем данную процедуру для определения оптимального среднего геометрического портфеля, который состоит из 50% для А и 50% для В, это означает, что нам следует торговать 1 контрактом на каждые 5000 долларов на балансе для рыночной системы А ($2500 / 0,5) и аналогично для В. В качестве еще одной рыночной системы вы можете использовать систему беспроцентного вклада. Это активы, не приносящие дохода, с HPR = 1,00 каждый день. Допустим, в нашем предыдущем примере оптимальный рост получен при 50% для системы А и 40% для системы В. Другими словами, следует торговать 1 контрактом на каждые 5000 долларов на балансе для рыночной системы А и 1 контрактом на каждые 6250 долларов для В ($2500 / 0,4). При использовании беспроцентного вклада в качестве другой рыночной системы это была бы одна из комбинаций (оптимальный портфель, который на 10% в деньгах). Если ваш портфель, найденный с помощью этой процедуры, не содержит систему беспроцентного вклада в качестве одной из составляющих, тогда вы должны повысить используемый фактор и разделить оптимальные f в долларах, используемые в качестве вводных данных. Возвращаясь к нашему примеру, допустим, мы использовали беспроцентный вклад и две рыночные системы, А и В. Далее предположим, что наш итоговый оптимальный портфель не содержит систему беспроцентного вклада. Пусть оптимальный портфель оказался на 60% в рыночной системе А, на 40% в рыночной системе В (возможна любая другая процентная комбинация, веса которой в сумме дают 100%) и на 0% в системе беспроцентного вклада. Если бы мы разделили наши оптимальные f в долларах на два, то этого было бы недостаточно. Мы должны разделить их на число, больше 2. Итак, мы вернемся и разделим наши оптимальные f в долларах на 3 или 4, пока не получим оптимальный портфель, который включает систему беспроцентного вклада. Конечно, в реальной жизни это не означает, что мы должны размещать какую-либо часть нашего торгового капитала в беспроцентные вклады. Беспроцентные активы стоит использовать для того, чтобы определить оптимальную сумму средств на 1 контракт в каждой рыночной системе при сравнении нескольких рыночных систем. Вы должны знать, что сумма процентных весов портфеля, при которых достигался наибольший геометрический рост в прошлом, может быть выше 100%. Этого можно достичь, разделив оптимальное f в долларах для каждой рыночной системы на некое целое число (которое обычно является числом рыночных систем), включив беспроцентный вклад (то есть рыночную систему с HPR = 1,00 каждый день) в качестве еще одной рыночной системы. Корреляции различных рыночных систем могут оказать серьезное воздействие на портфель. Важно понимать, что портфель может быть больше, чем сумма его частей (если корреляции его составляющих частей достаточно низки). Также возможно, что портфель будет меньше, чем сумма его частей (если корреляции слишком высоки). Рассмотрим снова игру с броском монеты, где вы выигрываете 2 доллара, когда выпадает лицевая сторона, и проигрываете 1 доллар, когда выпадает обратная сторона. Каждый бросок имеет математическое ожидание (арифметическое) пятьдесят центов. Оптимальное f составляет 0,25, то есть надо ставить 1 доллар на каждые 4 доллара на счете, а среднее геометрическое составляет 1,0607. Теперь рассмотрим вторую игру, где

Оптимальное f даст наибольший геометрический рост при большом количестве сделок. Это математический факт. Рассмотрим гипотетический поток сделок:

Теперь вернемся к началу нашей дискуссии. При потоке торговых P&L оптимальное f позволит получить наибольший геометрический рост (при условии, что арифметическое математическое ожидание положительное)'. Мы используем поток торговых P&L в качестве образца распределения возможных результатов в следующей сделке. Если привести к текущей цене поток прошлых прибылей и убытков, то мы сможем получить более правдоподобное распределение потенциальных прибылей и убытков для следующей сделки. Таким образом, нам следует рассчитывать оптимальное f из этого измененного распределения прибылей и убытков. Это не означает, что, используя оптимальное f, рассчитанное на основе приведенных данных, мы выиграем больше. Как видно из следующего примера, все выглядит несколько иначе:

данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот подход даст вам наибольший геометрический рост капитала. Конечно, результат будет зависеть от того, какие входные данные вы использовали в системе (сценарии, их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказанное ранее об оптимальном f применимо здесь, и это означает также, что ожидаемые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов, размещенных в соответствии с рассматриваемым сценарием, могут быть потеряны в какое-либо время в будущем. Например, вы используете данный метод, чтобы определить сумму средств, предназначенных для инвестирования в акции. Допустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Другими словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торговые решения, основываясь на фундаментальных данных. Вы намечаете различные сценарии, которые могут произойти в процессе торговли. Чем больше сценариев и чем точнее сценарии, тем лучше будут полученные результаты. Предположим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

собираемся реинвестировать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигранные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геометрических следствий), для максимизации долгосрочного роста капитала мы должны принимать решения, исходя из среднего геометрического. Даже если сценарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка изменяется, чтобы максимизировать долгосрочный рост. Помните, чтобы максимизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую отдельную ставку, как будто она повторяется бесконечное число раз, если необходимо максимизировать рост в течение долгой последовательности ставок в нескольких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметическое ожидание. Математическое ожидание (арифметическое) не учитывает зависимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометрической среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Уравнение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не будет более рискованным, чем метод наибольшего арифметического математического ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометрический рост, он также более безопасен, чем размещение по наибольшему арифметическому математическому ожиданию, которое неизменно смешает вас вправо от пика кривой f.

Отметьте, что значение на пересечении столбца ответов и второй строки, т.е. ограничение суммы весов, равно количеству рыночных систем (не включая NIC), умноженному на 3. С помощью элементарных преобразований, описанных в главе 6, получим единичную матрицу. Теперь вы можете определить эффективную границу AHPR и эффективную границу GHPR для портфеля с неограниченными весами. Эффективная граница AHPR для портфеля с неограниченными весами соответствует использованию рычага (заемного капитала) без реинвестирования. Эффективная граница GHPR соответствует использованию рычага и реинвестированию прибылей. Наша цель — найти оптимальный неограниченный геометрический портфель, который в результате даст наибольший геометрический рост. Можно использовать уравнения с (7.Оба) по (7.06г) для нахождения на эффективной границе геометрического оптимального портфеля. В нашем случае, независимо от того, какое значение мы пытаемся найти для Е (значение на пересечение столбца ответов и первой строки), мы получаем один и тот же портфель, состоящий только из сберегательного счета, поднятого рычагом для достижения желаемого значения Е. В этом случае мы получаем самое низкое V (т. е. 0) для любого Е.

Столбец результатов относится к результатам по активному балансу счета. Таким образом, существует 50% вероятность полной потери активного счета, 25% вероятность того, что активный баланс останется тем же, и 25% вероятность того, что прибыль по активному счету составит 300%. В реальной торговле, разумеется, следует использовать не три сценария, а намного больше, но для наглядности мы ограничимся этим минимумом. Рассмотрим три сценария, вероятности их осуществления и результаты в процентных пунктах. Результаты должны отражать ваше мнение относительно исхода каждого сценария при полном оптимальном ? В данном случае оптимально использовать 0,1 If. He путайте полученное оптимальное f с оптимальными f компонентов портфеля. Здесь оптимальное f относится к планированию сценария, и, таким образом, в асимптотическом смысле для активного счета лучше использовать 11%, а для неактивного счета 89%. В начале следующего квартала следует повторить эту процедуру. Так как переразмещение в данном квартале является функцией размещения прошлого квартала, то лучше всего использовать соответствующее значение оптимального f, так как при этом достигается наибольший геометрический рост (при условии, что ваши входные данные — сценарии, их вероятности и соответствующие результаты — точны). Предложенный метод планирования сценария для размещения активов эффективен тогда, когда необходимо принять решение, исходя из прогнозов нескольких консультантов. В нашем примере вместо выбора трех сценариев вы можете учесть мнения трех консультантов. Столбец вероятностей выражает ваше доверие к каждому консультанту. Первый сценарий, с вероятностью 50% проигрыша всего активного счета, — это мнение «медвежьего» консультанта, и такому прогнозу вы считаете нужным придать вес вдвое больший, чем прогнозам двух других консультантов. Вспомним метод усреднения цены при продаже акций (см. главу 2). Мы можем использовать этот подход для переразмещения. Таким образом, мы получим метод, который систематически снимает прибыли и выводит нас из убыточной программы. В соответствии с этой программой следует регулярно (каждый месяц, квартал или любой другой период времени) снимать часть денег с общего счета (активный счет + неактивный счет). Помните, что периоды должны быть достаточно долгими, чтобы получить выигрыш, хотя бы небольшой, от динамического дробного ? Значение N, удовлетворяющее уравнению (8.01), — это минимальная длина периода, при которой динамическое дробное ? дает нам преимущество:

Торговля фиксированной долей счета дает наибольшую отдачу в асимптотическом смысле, т.е. максимизирует отношение потенциальной прибыли к потенциальному убытку Когда известно значение оптимального f, можно преобразовать дневные изменения баланса на основе одной единицы в HPR, определить арифметическое среднее HPR и стандартное отклонение полученных HPR, а также рассчитать коэффициенты корреляции HPR между любыми двумя рыночными системами. Далее мы должны использовать эти параметры для определения оптимальных весов оптимального портфеля (когда используется рычаг (leverage), вес и количество не одно и то же). Затем значения f следует разделить на соответствующие веса. В результате, мы получаем новые значения f, которые позволяют добиться наибольшего геометрического роста, принимая во внимание веса и взаимные корреляции рыночных систем. Наибольший геометрический рост достигается при использовании весов, сумма которых не ограничена, причем разность среднего арифметического HPR и стандартного отклонения HPR, возведенного в квадрат, должна быть равна единице [Уравнение (7.06в)]. Вместо «разбавления» (которое сдвигает нас влево на неограниченной эффективной границе), как в случае стратегии статического дробного f, можно использовать портфель при полном f, задей-ствуя только часть средств счета. Такой метод называется стратегией динамического дробного f. Оставшаяся часть средств (неактивный баланс) в торговле не используется. Так как торговля активной частью происходит на оптимальных уровнях f, активный баланс может довольно сильно колебаться. В результате, при некотором значении баланса или в некоторый момент времени, вы, вероятно, захотите (возможно, просто под воздействием эмоций) переразместить средства между активной и неактивной частями. Мы рассмотрели четыре метода переразмещения, хотя, конечно же, могут использоваться и другие методы, возможно, более подходящие для вас:

Методы, описанные в этой книге, могут использоваться не только фьючерсными трейдерами, но и трейдерами, работающими на любом рынке. Даже тем, кто торгует голубыми фишками, принципы, рассмотренные в этой книге, будут весьма полезны. Мы знаем, что для портфеля голубых фишек существует оптимальный рычаг, когда отношение потенциальных выигрышей к потенциальным проигрышам максимально, правда, при этом падения баланса могут быть довольно значительными, поэтому портфель необходимо разбавлять, используя стратегию динамического дробного ? Для того чтобы использовать методы, описанные в этой книге, в торговле акциями, мы будем считать, что акция является фьючерсной рыночной системой. Предположим, текущая цена Toxico равна 40 долларам. Следовательно, стоимость 100 акций Toxico составляет 4000 долларов. Лот из 100 акций можно считать 1 контрактом рыночной системы Toxico. Таким образом, если работать с наличным счетом, то в уравнении (8.08) следует заменить переменную залог; $ на цену 100 акций Toxico (в нашем случае 4000 долларов). Далее, мы можем определить верхнюю границу доли ? Помните, что мы моделируем ситуацию с рычагом, но на самом деле не занимаем и не ссужаем денежные средства, поэтому в любых формулах, где есть RFR (например, отношение Шарпа), следует использовать RFR = 0. Если в случае с Toxico используется маржевой счет и первоначальный залог составляет 50%, то в уравнении (8.08) залог$ = $2000. Традиционно управляющие фондами акций использовали портфели, в которых сумма весов ограничена единицей. Состав портфеля выбирался таким образом, чтобы при данном уровне арифметической прибыли дисперсия была минимальной. Получившийся в результате портфель задавался весами или долями торгового счета для каждого компонента портфеля. Сняв ограничение по сумме весов и выбрав геометрически оптимальный портфель, мы получим оптимальный портфель с рычагом. Здесь веса и количества отличаются. Разделим оптимальное количество для финансирования одной единицы каждого компонента на его соответствующий вес и получим оптимальный рычаг для каждого компонента портфеля. Теперь разбавим портфель, включив в него безрисковый актив. Можно разбавить портфель до точки, где рычаг как бы исчезает, т.е. рычаг применяется к активной части портфеля, но активный баланс портфеля в действительности использует беспроцентные деньги из неактивной части баланса. Таким образом мы получим портфель, в котором регулируются позиции при изменении баланса счета, что позволяет получить наибольший геометрический рост. Предложенный метод максимизирует отношение потенциального геометрического роста к потенциальному проигрышу и допускает заранее известный максимальный проигрыш. Для управления портфелем ценных бумаг описанный метод является наилучшим. Наиболее распространенный в настоящее время метод выведения эффективной границы в действительности не позволяет получить эффективную границу и, тем более, геометрический оптимальный портфель (геометрический оптимальный портфель всегда находится на эффективной границе), который можно найти только с помощью оптимального ? Кроме того, традиционный метод позволяет получить портфель на основе статического ?, а не динамического ?, которое в асимптотическом смысле предпочтительнее.

Кроме того, для доказательства оптимальности /мы можем также воспользоваться теоремой Ролля. Вспомните, что под оптимальностью мы понимаем то, что дает наибольший геометрический рост с увеличением количества испытаний. Поскольку показателем среднего геометрического роста является TWR, нам нужно доказать, что существует такое значение f, при котором достигается максимум TWR.


Коэффициент 1,00 означает, что существует полная функциональная связь между появлением затрат и контрольным показателем сметы. Если же коэффициент стремится к нулю, то это свидетельствует о слабой взаимосвязи. Обычно в качестве контрольного факторного показателя сметы выбирается такой, при котором достигается наибольший коэффициент корреляции. При этом, естественно, предполагается, что целесообразно использовать именно этот контрольный показатель.

1. Метод последовательного включения. На первом шаге в модель включается переменная, которая имеет наибольший коэффициент корреляции с зависимой переменной. На каждом шаге в модель добавляется та переменная, которая имеет наибольший частный коэффициент корреляции, до тех пор, пока статистические характеристики не перестают улучшаться.

средств, тем меньше коэффициент окупаемости капиталовложений. Вариант А, являющийся наиболее консервативным, дает фирме наибольший ликвидный резервный запас для оплаты незапланированных потребностей в капитале. Для этого варианта по сравнению с другими двумя вариантами также будет наименьшим коэффициент окупаемости инвестиций. С другой стороны, вариант С обеспечивает наибольший коэффициент окупаемости капиталовложений, но он обладает наименьшей ликвидностью и, следовательно, наибольшим риском.

на первом шаге рассматривается лишь одна объясняющая переменная, имеющая с зависимой переменной Y наибольший коэффициент детерминации. На втором шаге включается в регрессию новая объясняющая переменная, которая вместе с первоначально отобранной образует пару объясняющих переменных, имеющую с У наиболее высокий (скорректированный) коэффициент детерминации. На третьем шаге вводится в регрессию еще одна объясняющая переменная, которая вместе с двумя первоначально отобранными образует тройку объясняющих переменных, имеющую с Y наибольший (скорректированный) коэффициент детерминации, и т. д.

1-й шаг. Из объясняющих переменных Х\—Х$ выделяется переменная Х4, имеющая с зависимой переменной Y наибольший коэффициент детерминации Щ^ (равный для парной модели

4. Выбирается то уравнение (8.33), которое обеспечивает наибольший коэффициент детерминации R2. Соответствующее значение у(в) принимается за оценку параметра у. Вычисляются оценки а, р.

Среди наших проектов Б имеет наибольший коэффициент рентабельности, а проекту В принадлежит следующий по величине коэффициент. Следовательно, если наш капитальный бюджет ограничен 10 млн дол., нам следует принять два этих проекта,

Первая из них имеет наибольший коэффициент параллельности. Он достигается специализацией рабочих мест и одновременностью обработки деталей одной и той же позиции на различных рабочих местах. В связи с этим главнейшим признаком параллельной

Среди наших проектов Б имеет наибольший коэффициент рентабельности, а проекту В принадлежит следующий по величине коэффициент. Следовательно, если наш капитальный бюджет ограничен 10 млн дол., нам следует принять два этих проекта.

Из выражения (3.32) находим наибольший коэффициент —,

Следующая задача — фиксация конкретных оценок по каждой из характеристик с установлением их относительного уровня по сравнению с наиболее высоким значением данной характеристики, достигнутым в современной — отечественной и зарубежной — технике. Например, если известно, что наибольший коэффициент полезного действия, достигнутый до настоящего времени по данному классу машин, равен 0,8, а данный завод выпускает (или планирует к выпуску) модель с к. п. д. 0,65, то относительная оценка этой модели составит 0,65 : 0,8 = 0,81. Обозначим величину относительных оценок (каждая из которых, естественно, меньше единицы или равна ей) соответственно через А, В, С, . . . Z.


Необходимо одновременно Необходимо оптимизировать Необходимо осуществлять Необходимо ознакомиться Необходимо перевести Необходимо подготовить Надежности функционирования Необходимо понимание Необходимо постоянное Необходимо предложить Необходимо предпринимать Необходимо прекратить Необходимо применять вывоз мусора снос зданий

Яндекс.Метрика