Определения минимального



С помощью сетевых моделей решается задача определения минимальной продолжительности производственных процессов (в частности, монтажа буровых и обустройства скважин) при заданной численности бригады. Задача заключается в том, чтобы с помощью сетевого графика найти такое распределение работ, которое сводит к минимуму срок строительства буровой. Ограничением является численность рабочих в вышкомонтажной бригаде.

С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

Для определения минимальной цены продажи автомашины для вложения вырученных средств в банк под 20% годовых следует найти современную стоимость предполагаемой суммы поступлений от использования машины при 20%-ной ставке доходности:

природно-климатическими, национальными, историческими и другими особенностями. Базовым потребительским бюджетом обычно является минимальный потребительский бюджет, который характеризует ту структуру потребления и уровень удовлетворения потребностей, которые общество на данном этапе экономического и социального развития считает минимально допустимым (приемлемым). С экономической точки зрения минимальный потребительский бюджет в его денежном выражении отражает нижнюю границу стоимости рабочей силы, за пределами которой происходит прямое разрушение рабочей силы и ее деградация. Минимальный потребительский бюджет служит основой для определения минимальной заработной платы, а также для расчета минимальных размеров пенсий, пособий, стипендий и других социальных выплат. Расчеты минимального потребительского бюджета позволяют обосновать систему социальных гарантий для малообеспеченных и слабо защищенных слоев населения, в том числе систему индексации минимальных размеров оплаты труда и социальных выплат в связи с инфляционным ростом цен и другими конъюнктурными изменениями на рынках производственных ресурсов, потребительских товаров и услуг.

Условиями сравнительной эффективности углепровода являются: по капитальным вложениям Ky.f * Кж ; по эксплуатационным расходам Эу.р f Э* ; по приведенным затратам Эу.Р1-о.12 К,/.р $Э*Ю,12 К*. Решение втих неравенств позволяет получить следупцие выражения для определения минимальной производительности углевровода, при которой он становится равноэффективным с железнодорожным транспортом: по капитальным вложениям

Условиями сравнительной эффективности углепровода являются: по капитальным вложениям Ky.f * Кж ; по эксплуатационным расходам Эу.р f Э* ; по приведенным затратам Эу.Р1-о.12 К,/.р $Э*Ю,12 К*. Решение втих неравенств позволяет получить следупцие выражения для определения минимальной производительности углевровода, при которой он становится равноэффективным с железнодорожным транспортом: по капитальным вложениям

Анализ результатов экспериментальной апробации алгоритма расчета оптимальной очередности запуска в производство различных серий изделий и определения минимальной длительности совокупного производственного цикла их изготовления на заводе № 1 показал, что количество перспективных вариантов очередности незначительно. Как свидетельствуют данные табл. 18, удельный вес их в общем количестве вариантов очередности запуска в производство серий изделий для рассматриваемых случаев не превышает 2%. Иными словами, как было установлено в процессе решения реальных производственных задач, вероятность того, что все варианты очередности запуска в производство различных серий изделий окажутся неперспективными достаточно высока. Следовательно, какой бы вариант очередности изготовления различных серий мы ни

изготовления серий изделий. Поскольку перечень и продолжительности работ определены заранее и представлены заданными величинами, задача определения оптимальной очередности запуска в производство различных серий изделий заключается в целенаправленном переборе этих работ и имеет дискретный характер. Следует отметить, что число переборов — величина конечная, и, перебрав все возможные сочетания заданных работ, можно так и не получить перспективного варианта очередности. Данную ситуацию нужно рассматривать как частный случай вырождения задачи определения минимальной длительности совокупного производственного цикла и оптимальной очередности запуска в производство различных серий изделий. Наличие подобных ситуаций не означает, что решение поставленной задачи оперативно-производственного планирования принципиально невозможно. Существует несколько эффективных подходов, позволяющих ликвидировать указанное вырождение задачи. Наиболее простым является увеличение продолжительности периода запуска в производство различных серий изделий. Суть этого подхода рассмотрим на таком примере.

Первая ситуация, как уже отмечалось, может быть охарактеризована как вырождение задачи определения минимальной длительности Тц.СОв. Допустим, в рассматриваемом примере вырождение задачи определения оптимальной очередности изготовления 4 серий изделий имело место при установлении периода запуска в производство серии изделий III, т. е. в процессе стыковки третьего графика. При этом установлено, что ни одна из шести начальных работ второго графика (см. (20)) не может использоваться в качестве составляющей периода запуска в производство серии изделий III, так как выполняется неравенство, свидетельствующее о наличии накладки:


МРОТ имеет значение не только для установления размера оплаты труда. Он используется для определения минимального уровня стипендий студентам, аспирантам, обучающимся с отрывом от производства. Так, стипендии учащимся образовательных учреждений начального профессионального образования, находящимся на государственном обеспечении, выплачиваются в размере не менее 50% МРОТ. Вместе с тем многие критикуют как сам показатель МРОТ, так и особенно его использование для определения размеров социальных выплат.

Для определения минимального объема выпуска продукции, ниже которого производство продукции становится нерентабельным, используют показатель порога рентабельности, который определяется по следующей формуле:

Поскольку задача решается в целях определения минимального грузооборота, то полученный показатель (- 4) говорит о том, что результат может быть улучшен1. Там, где расстояние перевозок меньше, там, естественно, ниже и транспортные расходы, и наоборот. Поэтому наименьшее значение груза в одной из отрицательных клеток (11т) вычитается из отрицательных клеток и прибавляется к положительным.

График безубыточности. Это составная часть любого бизнес-плана независимо от того, разработан он на действующем предприятии или при создании новой фирмы, разработке инвестиционного проекта. В процессе планирования объема продаж возникает необходимость определения минимального численного значения этого показателя по предприятию в целом как первоначальной критической точки, ниже которой будут получены убытки. Обычно для этих целей рекомендуется строить график безубыточности (как самостоятельный финансовый расчет). Порядок его построения рассмотрен в п. 3.5.

Для определения минимального объема продаж новой продукции или услуг с точки зрения самоокупаемости предлагается использовать следующую формулу:

МРОТ имеет значение не только для установления размера оплаты труда. Он используется для определения минимального уровня стипендий студентам, аспирантам, обучающимся с отрывом от производства. Так, стипендии учащимся образовательных учреждений начального профессионального образования, находящимся на государственном обеспечении, выплачиваются в размере не менее 50% МРОТ. Вместе с тем многие критикуют как сам показатель МРОТ, так и особенно его использование для определения размеров социальных выплат.

минус 3 сигма от среднего, поэтому можно использовать 3 сигма в качестве параметра для (1). Другими словами, мы рассматриваем нормальное распределение только между минус 3 сигма и плюс 3 сигма от среднего значения. Таким образом, мы охватываем 99,73% всей активности в пределах нормального распределения. Вообще, для этого параметра лучше использовать значение от 3 до 5 сигма. Что касается числа равноотстоящих точек данных (шаг 2), мы будем использовать число, как минимум, в десять раз большее количества стандартных отклонений, которое используется в (1). Если мы выберем 3 сигма для (1), тогда возьмем, по крайней мере, 30 равноотстоящих точек данных для (2). Это означает, что на горизонтальной оси следует отметить отрезок от минус 3 сигма до плюс 3 сигма и нанести на нем 30 равноотстоящих точек. Так как между минус 3 сигма и плюс 3 сигма находится 6 сигма и нам надо разместить на этом отрезке 30 равноотстоящих точек, мы должны разделить 6 на 30 - 1, или 29. Это даст нам 0,2068965517. Первой точкой данных будет минус 3. Затем мы будем добавлять 0,2068965517 к каждой предыдущей точке, пока не достигнем плюс 3. И так нанесем 30 равноотстоящих точек данных между минус 3 и плюс 3. Нашей второй точкой данных будет -3 + 0,2068965517 =-2,793103448, третьей точкой данных будет 2,79310344 + 0,2068965517 = -2,586206896, и так далее. Таким образом, мы зададим 30 точек на горизонтальной оси. Чем больше точек данных вы используете, тем лучше будет разрешение нормальной кривой. Использование количества точек в десять раз больше числа стандартных отклонений не является строгим правилом определения минимального числа точек данных. Нормальное распределение является непрерывным распределением. Однако мы должны сделать его дискретным, чтобы по нему найти оптимальное ? Чем большее число равноотстоящих точек данных мы используем, тем ближе наша дискретная модель будет к реальному непрерывному распределению. Почему не следует использовать слишком большое число точек данных? Чем больше точек данных вы будете использовать в нормальной кривой, тем больше времени понадобится для поиска оптимального ? Даже если вы будете использовать компьютер для поиска оптимального ?, при большом количестве точек данных расчет займет достаточно много времени. Более того, каждая дополнительная точка данных увеличивает разрешение в меньшей степени, чем предыдущая точка. Мы будем называть описанные выше два вводных параметра ограничивающими параметрами (bounding parameters). Третий и четвертый шаги позволят определить среднюю арифметическую сделку и стандартное отклонение для рыночной системы, с которой вы работаете. Если у вас нет механической системы, можно получить эти числа из брокерских отчетов. Один из реальных плюсов рассматриваемого метода состоит в том, что для его использования не обязательно работать по механической системе, вам даже не нужны брокерские отчеты или торговые результаты в бумажной форме. Метод можно использовать, рассчитав два вводных параметра: среднюю арифметическую сделку (в пунктах или долларах) и стандартное отклонение сделок (в пунктах или долларах, в зависимости от того, что вы используете для средней арифметической сделки). Если стандартное отклонение сложно рассчитать, тогда просто попытайтесь понять, насколько, в среднем, сделка будет отличаться от средней сделки. Рассчитав среднее абсолютное отклонение, вы можете использовать уравнение (3.18) для преобразования оценочного среднего абсолютного отклонения в оценочное стандартное отклонение:

Когда мы тестировали вхождения, мы обнаружили, что большинство популярных методов вхождения эффективно не более, чем случайный выбор точек вхождения. Мы подумали, что было бы интересно попробовать протестировать случайные выходы. В этом тесте наш случайный выход подбирается в два этапа. Сначала выбирается случайное число между 5 и 20 для определения минимального количества дней, в течение которых торговля будет открытой. По прошествии минимального количества дней, первое закрытие против направления тренда заставит нас выйти из торговли на открытии следующего дня. (Несмотря на то, что минимальное количество дней выбирается случайным образом, в стратегию включен элемент следования за трендом.) Как видите, результаты не слишком разительно отличаются от результатов остальных тестов, однако, если бы мы проделали тысячу случайных тестов, мы могли бы прийти к ужасающим результатам. (Смотрите рисунок 3-14.)

Способ измерения для восходящего треугольника довольно прост. Измерьте высоту модели в самой широкой части и спроецируйте полученное расстояние вверх от точки прорыва. Это является еще одним примером использования вола-тильности (изменчивости) ценовой модели для определения минимального ценового ориентира.

ние и результаты в [2, 3]): определения минимального уровня

задача определения минимального резерва, при условии вы-


Организации статистического Организации страхового Организации строительных Организации структурного Организации существует Организации технологического Организации требование Обязательствам относятся Организации выполняющие Организации внедрения Организации возможности Организации вспомогательного Организации учитываются вывоз мусора снос зданий

Яндекс.Метрика