Построения аддитивной



купке и продаже акций возможно на пути построения экспертных систем,

Технологию построения экспертных систем называют инженерией знаний. Этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стра-

построения экспертных систем

Как уже отмечалось, технологию построения экспертных систем часто называют инженерией знаний. Как правило, этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему. Одной из наиболее сложных проблем, возникающих при создании экспертных систем, является преобразование знаний эксперта и описания применяемых им способов поиска решений в форму, позволяющую представить их в базе знаний системы, а затем эффективно использовать для решения задач в данной предметной области.

21.5. Инструментальные средства построения экспертных систем .....568

Утраченные ноу-хау представляют серьезную проблему для тех компаний, которые пытаются с этим справиться. Первые попытки построения экспертных систем — компьютерных программ, способных имитировать поведение эксперта вплоть до аналитических действий при установлении, например, причин неисправности, — имели ограниченный успех. В значительной мере причина «провала» кроется в слишком завышенных ожиданиях первых разработчиков таких систем, но сама концепция получила подтверждение и право на существование. Очевидно, компьютерные системы еще сыграют свою роль в создании «корпоративной памяти» для сохранения корпоративных знаний и эта корпоративная память станет основным активом предприятия третьего тысячелетия.

ную в данный момент непригодность многих видов знаний для построения экспертных систем, область применения последних весьма широка.

Технологию построения экспертных систем называют инженерией знаний. Этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стра-

21.5. Инструментальные средства построения экспертных систем

Как уже отмечалось, технологию построения экспертных систем часто называют инженерией знаний. Как правило, этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему. Одной из наиболее сложных проблем, возникающих при создании экспертных систем, является преобразование знаний эксперта и описания применяемых им способов поиска решений в форму, позволяющую представить их в базе знаний системы, а затем эффективно использовать для решения задач в данной предметной области.

21.5. Инструментальные средства построения экспертных систем .....568


1. Сумма значений сезонной компоненты внутри одного цикла должна быть равна нулю (в соответствии с методикой построения аддитивной модели временного ряда). Следовательно, значение сезонной компоненты за декабрь составит:

Для прогнозирования объема продаж компании ABC (млн руб.) на основе поквартальных данных за 1993-1997 гг. была построена аддитивная модель временного ряда объема продаж. Уравнение, моделирующее динамику трендовой компоненты этой модели, имеет вид: Т = 100 + 2 • t (при построении тренда для моделирования переменной времени использовались натуральные числа, начиная с 1). Показатели за 1996 г., полученные в ходе построения аддитивной модели, представлены в табл. 4.12.

Шаг 6. В соответствии с методикой построения аддитивной модели расчет ошибки производится по формуле

Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей, рассмотренной в п. 5.4. При дальнейшем изложении методов анализа взаимосвязей в этой главе мы примем предположение, что изучаемые временные ряды не содержат периодических колебаний. Предположим, изучается зависимость между рядами х и у. Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким (положительным в случае совпадения и отрицательным в случае противоположной направленности тенденций рядов х и у). Однако из этого еще нельзя делать вывод о том, что х причина у или наоборот. Высокий коэффициент корреляции в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970 по 1990 г. составил 0,8. Это, естественно, не означает, что увеличение количества домов отдыха способствует росту числа выпускников вузов или увеличение числа последних стимулирует спрос на дома отдыха.

Алгоритм построения аддитивной или мультипликативной модели.

6. Какой критерий лежит при выборе построения аддитивной или

Пример построения аддитивной модели временного ряда с помощью

Алгоритм построения аддитивной или мультипликативной модели.

6. Какой критерий лежит при выборе построения аддитивной или

Пример построения аддитивной модели временного ряда с помощью

Шаг 6. В соответствии с методикой построения аддитивной модели расчет ошибки производится по формуле

Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей, рассмотренной в п. 5.4. При дальнейшем изложении методов анализа взаимосвязей в этой главе мы примем предположение, что изучаемые временные ряды не содержат периодических колебаний. Предположим, изучается зависимость между рядами х и у. Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким (положительным в случае совпадения и отрицательным в случае противоположной направленности тенденций рядов х и у). Однако из этого еще нельзя делать вывод о том, что х причина у или наоборот. Высокий коэффициент корреляции в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970 по 1990 г. составил 0,8. Это, естественно, не означает, что увеличение количества домов отдыха способствует росту числа выпускников вузов или увеличение числа последних стимулирует спрос на дома отдыха.


Предприятия уменьшение Предприятия управления Предприятия установление Предприятия увеличиваются Поступления процентов Предприятию целесообразно Предприятию организации Предприятию требуется Предпродажная подготовка Председателя центрального Предсказать поведение Представить результаты Представить структуру вывоз мусора снос зданий

Яндекс.Метрика