|
Результативным признаком
• выделенными факторами и результативным показателем. Выделяют 4 класса проблем, возникающих при решении прогнозных задач. Рассмотрим их подробнее.
Каждое явление можно рассматривать и как причину, и как результат. Например, производительность труда можно рассматривать, с одной стороны, как причину изменения объема производства, уровня ее себестоимости, а с другой — как результат изменения степени механизации и автоматизации производства, усовершенствования организации труда и т.д. Если тот или иной показатель рассматривается как следствие, как результат действия одной или нескольких причин и выступает в качестве объекта исследования, то при изучении взаимосвязей его называют результативным показателем. Показатели, определяющие поведение результативного признака, называются факторными.
Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. К примеру, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.
Приемы корреляционного анализа используются для измерения влияния факторов в стохастическом анализе, когда взаимосвязь между показателями неполная, вероятностная. Различают парную и множественную корреляцию. Парная корреляция - это связь между двумя показателями, один из которых является факторным, а другой -результативным. Множественная корреляция возникает от взаимодействия нескольких факторов с результативным показателем.
При прямом факторном анализе ставится задача выявить отдельные факторы, влияющие на изменение результативного показателя или процесса; установить формы детерминированной зависимости между результативным показателем и определенным набором факторов и, наконец, определить роль отдельных факторов в изменении результативного экономического показателя.
Коэффициент множественной корреляции (R) характеризует тесноту связи между результативным показателем и набором факторных показателей:
При прямом факторном анализе выявляются отдельные факторы, влияющие на изменение результативного показателя или процесса, устанавливаются формы детерминированной (функциональной) или стохастической зависимости между результативным показателем и определенным набором факторов и, наконец, выясняется роль отдельных факторов в изменении результативного экономического показателя.
Рассмотрим зависимость между выручкой от продаж и расходами на рекламу (без учета инфляции) и оценим характер соотношения между обеими переменными с помощью коэффициента корреляции. Результативным показателем является выручка от продаж (у), а факторным — затраты на рекламу (х). Исходная информация с января по июль:
2. Показатели, входящие в систему факторного анализа, должны иметь причинно-следственную связь с результативным показателем.
Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. когда результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.
Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель. Полученные коэффициенты парной корреляции между результативным признаком и каждым из факториальных призна* ков по нефтедобывающим объединениям были близки к единице, что указывгло на очень высокую тесноту связи.
- Каждый из этих факторов не должен быть в функциональной зависимости от другого или от группы факторов. Иные факторы изучались при построении зависимости между результативным признаком (эксплуатационные затраты на одну скважину в год эксплуатации) и фактореальными признаками по нефтедобывающей промышленности СССР [20]. При этом были отобраны для включения в линейное корреляционное управление, следующие факторы:
Корреляционно-регрессионный анализ учитывает межфакторные связи, следовательно, дает нам более полное измерение роли каждого фактора: прямое, непосредственное его влияние на результативный признак; косвенное влияние фактора через его влияние на другие факторы; влияние всех факторов на результативный признак. Если связь между факторами несущественна, индексным анализом можно ограничиться. В противном случае его полезно дополнить корреляционно-регрессионным измерением влияния факторов, даже если они функционально связаны с результативным признаком.
1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе мер тесноты связи факторов с результативным признаком.
форму многофакторных связей не только как наиболее простую, но и как форму, предусмотренную пакетами прикладных программ для ПЭВМ. Если же связь отдельного фактора с результативным признаком не является линейной, то производят линеаризацию уравнения путем замены или преобразования величины факторного признака.
По этой матрице можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя все эти показатели относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы слабо связанные с результативными признаками, но тесно связанные с другими факторами. Если, например, имеем: г =0,8; г = 0,65; г^п = 0,88, то в регрессионное уравнение следует включить фактор х{, а фактор х2 не включать, так как он тесно связан с х] (коллине-арен с я,), и его корреляция с у слабее, чем корреляция фактора *,. Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т. е. с коэффициентом корреляции, равным единице. Включение таких пар признаков приводит к вырожденной матрице коэффициентов и неопределенности решения. В этом случае решение задачи на ПЭВМ прекращается.
с результативным признаком - коэффициент множественной детерминации R~yt x как частное от деления определителя матрицы А* на определитель матрицы Л, где
Корректированный коэффициент детерминации всегда ниже, чем некорректированный, причем разность их значений тем меньше, чем меньше факторов входит в уравнение регрессии. Если из числа факторов исключить факторы, слабо связанные с результативным признаком (т. е. с низким значением Р;, например, Р; < 0,1), то некорректированный коэффициент детерминации немного уменьшится (он всегда уменьшается при исключении части факторов), но корректированный коэффициент может даже возрасти за счет уменьшения разности между R2 и корректированным R2. Что касается множественного коэффициента корреляции R, то программа «Microstat» рассчитывает его, как корень квадратный из некорректированного R2, а другие программы, например «Statgraphics», - как корень квадратный из f^K,,rp.
1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием). Поэтому, недопустимо, например, в модель себестоимости у вводить в качестве одного из факторов Xj коэффициент рентабельности, хотя включение такого «фактора» значительно повышает коэффициент детерминации.
5. Желательно, чтобы между результативным признаком и факторами соблюдалось единство единицы совокупности, к которой они отнесены. Например, если у - валовой доход предприятия, то и все факторы должны относиться к предприятию: стоимость производственных фондов, уровень специализации, численность работников и т. д. Если же у - средняя зарплата рабочего на предприятии, то факторы должны относиться к рабочему: разряд или классность, стаж работы, возраст, уровень образования, энерговооруженность и т. д. Правило это не категорическое, в модель зарплаты рабочего можно включить, например и уровень специализации предприятия.
ж) устранение мультиколлинеарности (взаимозависимости) факторов и уточнение набора показателей (наиболее простой вариант действий таков: рассчитываются парные коэффициенты корреляции по всем анализируемым признакам; любые два фактора не могут одновременно включаться в модель, если они связаны между собой теснее, чем каждый из них с результативным показателем; иными словами, два фактора включаются в модель, если для абсолютных значений парных коэффициентов корреляции одновременно выполнены неравенства roi > rtj и ruj > rfj , где г у — коэффициент корреляции между факторными признаками, г0, — коэффициент коррелляции между /-м фактором и результативным показателем; в противном случае в модель включается лишь один из этих двух факторов — тот, который более тесно связан с результативным признаком);
Различными финансовыми Различными инвестиционными Различными направлениями Работников организации Различными предприятиями Различными социальными Различными свойствами Различными вариантами Различным функциональным Различным организациям Различным пользователям Различным результатам Различным значениям вывоз мусора снос зданий
|
|
|
|